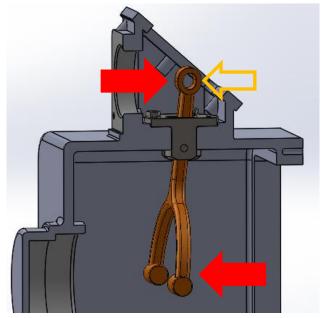


Individual Gearbox Actuator Preparations for PDR

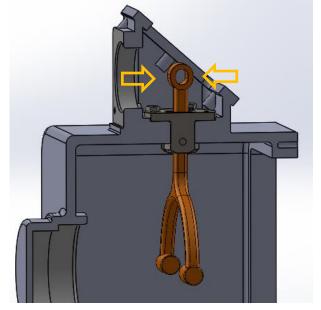
Dr Hengan Ou

email: <u>h.ou@nottingham.ac.uk</u>

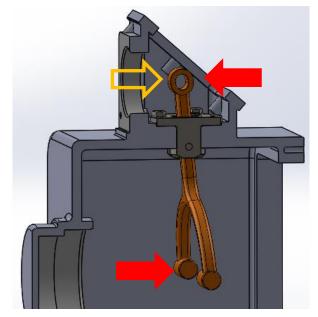
What should be included in PDR submission?


- > A single report in PDF format submitted on Moodle by 3pm, Friday, 3rd March
- A PDR check list and PDR pro-forma are available in the Individual Gearbox Actuator) folder in the Design Tutorial and Support section on Moodle
- PDR report should include (<u>in PDF format</u>)
 - Completed PDR checklist (1 page from Pro forma)
 - Statement of Requirements (1 page from Pro forma)
 - Concept sketches with annotations (1 page)
 - Morphology chart (1 page from Pro forma)
 - Calculations (1~2 pages)
 - Concept selection (1 page)
 - Time management (1 page from student guideline Pro forma)
- > A typical PDR report is between 7~9 A4 pages
- Use the name "Surname-Initials_ID number" in submission, e.g. "Student-A_20345678"

What are the key questions for consideration and solutions

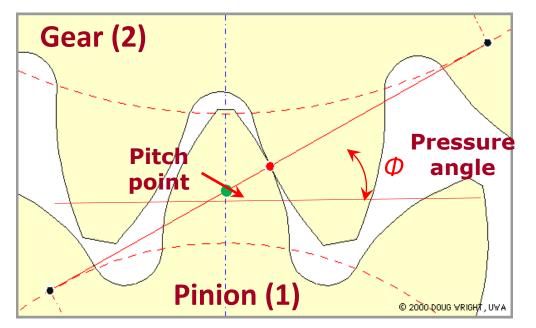

- > What are the key requirements of the design?
 - Read carefully the MSG Meeting note in project brief.
- How to capture key functional and performance requirements of the Actuator?
 A clear and concise statement of requirements using the pro-forma
- How to think of possible means to meet enabling functions?
 - Use Morphology chart pro-forma to map out all possible options and make sure the optimum solution meets all requirements and is practical to operate
- What is exactly to be designed and what is NOT part of the task?
 Only the actuator including the bit for failure mode BUT NO Control/Valve, etc
- What are the needed calculations for PDR submission?
 - Power and torque for the gearbox and force calculation of the Hirth Clutch and how these can be used in concept design/selection of the Actuator
- How to select the best possible solution?
 - Effective use of the decision matrix method plus justification for your decision
- How to assess the efficiency and productivity of your work for PDR?
 - Estimation of the time you spent and discuss ways for improvement

Gearbox actuator operation


• Actuation to achieve three positions

Actuation force to Z=2:1 gear ratio

Initial load in Neutral position


Actuation force to Z=1:1 gear ratio

How to calculate these actuation forces and what's actuation displacement?

Recap of Gears 1

Gears are the most rugged, durable and efficient means of power transmission between two shafts.

http://www.mech.uwa.edu.au/DANotes/gears/meshing/meshing.html

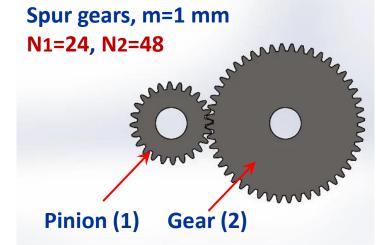
Gear ratio equation:

$$Z = \frac{\omega_1}{\omega_2} = \frac{d_2}{d_1} = \frac{N_2}{N_1}$$

Necessary & sufficient conditions :

$$m_1 = m_2, \quad \phi_1 = \phi_2$$

Note: The most commonly used pressure angle is ϕ or $\alpha = 20^{\circ}$


Details to refer **Gears 1 Lecture slides and Handouts** available on Moodle

> Pitch diameter: d=mN, m is Module, in mm (SI unit) N is number of teeth

An example: Power & torque calculation of a gear train

• Power equation of a rotating system (as of the air motor)

$$P = T \times \omega \qquad \& \qquad \omega = \frac{2\pi}{60}n$$

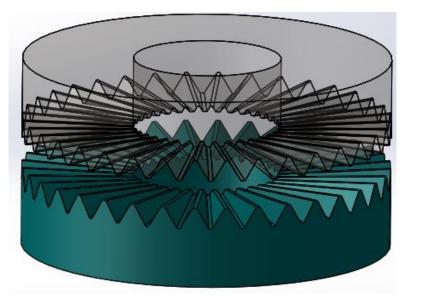
where, P is power (W),
T is torque (Nm),
 ω is rotating speed (rad/s),
n is rotating speed (rpm).

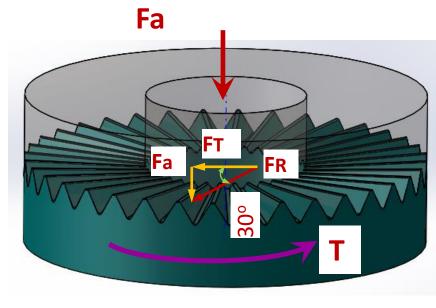
For the simple gear train shown, the power input is P = 50 W from pinion (1) at n1 = 200 rpm. Calculate the rotating speed and torque output from gear (2).

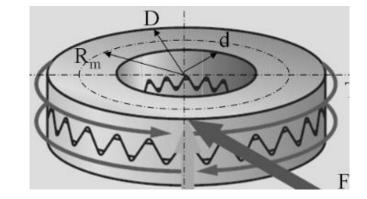
Note: Spur gears are highly efficient so power loss can be neglected in calculation.

1) Use gear ratio equation:
$$Z = \frac{\omega_1}{\omega_2} = \left(\frac{n_1}{n_2}\right) = \frac{N_2}{N_1}$$
 $n_2 = \frac{N_1}{N_2} \times n_1 = \frac{24}{48} \times 200 = 100 \ (rpm)$

2) Use power equation:


$$T_2 = \frac{P}{\omega_2} = \frac{P}{n_2} \times \frac{60}{2\pi} = \frac{50}{100} \times \frac{60}{2\pi} = 4.8 \ (Nm)$$


?


Can you calculate torque & speed of the 2-speed gearbox at given operation condition?

Hirth clutch forces and torque

• Hirth clutch axial, tangential forces and torque

Disengaged

Engaged

$$F_{a} = kF_{T}tan\left(\frac{\pi}{6}\right)$$
$$F_{T} = \frac{T}{R_{m}}$$

where, *k*=1.5 – coefficient *Fa, FT* – axial, tangential forces *T* – torque *Rm* – medium radius of Hirth coupling

Basic sizing of hydraulic actuators

- Key factors for consideration in designing hydraulic actuators
 - Working conditions:
 pressure, force, stroke
 distance, speed,
 temperature
 - Cylinder bore and piston rod sizes
 - \circ Methods for sealing
 - Mounting style/interface
 - **D**_k Bore
 - **d**_s Piston rod diameter
 - *p* Pressure in cylinder
 - $A_{1\nu} A_2$ Working areas of cylinder $F_{1\nu} F_2$ Force extending and force
retracting of cylinder

	Single-rod cylinder A ₂ < A ₁	Double-rod cylinder A ₂ = A ₁									
Calculation formulae	$ \begin{array}{c} \begin{array}{c} F_1 \\ F_2 \\ \hline \\ $	$\begin{array}{c} \mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}$									
Working ares for extension	$A_1 = \frac{\pi}{4} \bullet D_k^2$	$A_1 = \frac{\pi}{4} \bullet (D_k^2 - d_s^2)$									
Working area for retracting	$A_2 = \frac{\pi}{4} \bullet (D_k^2 - d_s^2)$	$A_2 = \frac{\pi}{4} \bullet (D_k^2 - d_s^2)$									
Power when extending	$F_1 = p \bullet A_1$										
Power when retracting	$F_2 = p \bullet A_2$										
https://www.haenchen-hydraulic.com/technical-											

https://www.haenchen-hydraulic.com/technicalinformation/hydraulic-cylinder/calculation.html

A worked example: Selection of compression spring from a spring supplier (LeeSpring)

Select a compression spring required to exert a force of 35 N when compressed to a length of 60 mm. At a length of 48 mm, the force must be 50 N. The spring is to be installed in a hole with 24 mm diameter.

From the above, we know

Fa = 35 N, La = 60 mm & Fo = 50 N, Lo = 48 mm

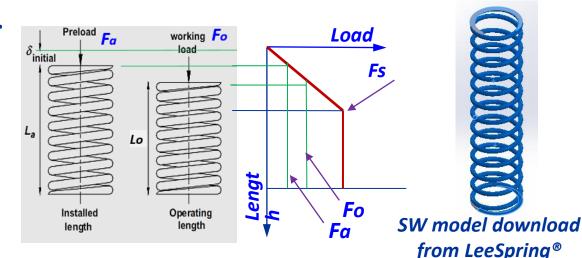
From slide 9,

$$k = \frac{F_o - F_a}{L_a - L_o} = \frac{50 - 35}{60 - 48} = 1.25 \ (N/mm)$$

 $L_f = 60 + \frac{35}{1.25} = 88 \ (mm)$

Ulee Spring[®]

Outside Diameter


Load

N ○ka ○am

Reset Al

Check Lee Spring[®] catalogue at Imperial/Inches Intps://www.leespring.co.uk/

	About Us	Stock Parts 7	Reques	t a Quote	Request a	Catalogue	Resource C	enter Co	ontact Us
Part Number	Outside Diameter (mm)	Hole Diameter (mm)	Rod Diameter (mm)	Free Length (mm)	Rate (N/mm)	Solid Height (mm)	Wire Diameter (mm)	Material	Compare
LC 050K 09 S316	21.46	22.23	18.19	88.9	0.368	12.34	1.27	SS316	
LC 085K 10 S316	21.46	22.23	16.61	88.9	2.189	30.23	2.16	SS316	
LC 075K 11 M	21.46	22.23	17.12	88.9	1.53	27.27	1.91	MW	
LC 055K 09 S	21.46	22.23	17.98	88.9	0.49	14.45	1.4	SS	
LC 075K 11 S316	21.46	22.23	17.12	88.9	1.275	27.27	1.91	SS316	
LC 091K 08 S	21.46	22.23	16.31	88.9	2.845	33.07	2.31	SS	

A worked example: Selection of disc spring

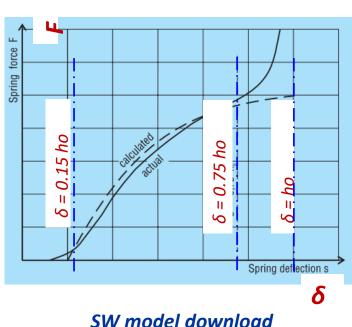
Select Spirol disc springs required to exert an initial force of 200 N at 0.15ho and a maximum operational force of 700 N under further 2.7 mm deflection. The spring is to be installed in a hole with 24 mm diameter.

From the above, we know

 $s1 = 0.15ho \rightarrow Fa1 = 200 N \& s2 = 0.75ho \rightarrow Fa2 = 700 N$

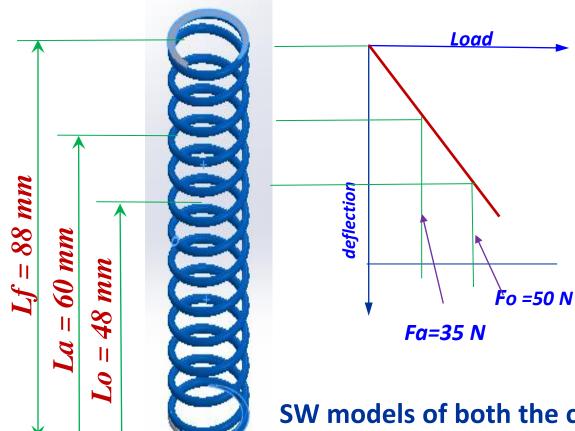
From Spirol disc spring table,

 $s1 = 0.15ho = 0.11 mm \rightarrow Fa1 = 214 N$

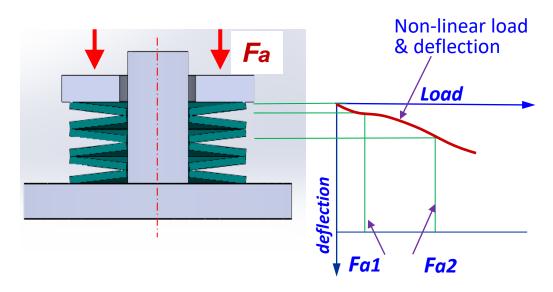

 $s2 = 0.75ho = 0.56 mm \rightarrow Fa2 = 719 N$

 $\Delta s = S2 - S1 = 0.6ho = 0.45 \text{ (mm)} \rightarrow \text{N=S} / \Delta s = 2.7 / 0.45 = 6 \text{ (springs)}$

DISC SPRINGS TO DIN EN 16983 (formerly DIN 2093)



Dimensions								Design Force, Deflection and Stresses Based on E = 206 kMPa and μ = 0.3																					
	DIN Dimensions Series						Preload, $s = 0.15 h_{\odot}$					s = 0.25 h _o					s = 0.5 h _o				$s = 0.75 h_{o}$				$s = h_o$				
	D.	D	t	l _o	h,	þ.	s	ે <u>દ</u>	F		σπ	s	l,	F	σΠ	σm	s	l,	F	σΠ	σ	s	<i>ا</i> ړ (F	σΠ	σπ	s	F	σ _{αм}
С	22.5	5 11.2	0.60	1.40	0.80	1.33	0.12	1.28	160	-23	302	0.20	1.20	240	-14	488	0.40	1.00	370	98	897	0.60	0.80	426	336	1,227	0.80	444	-1,178
В	22.5	5 11.2	0.80	1.45	0.65	0.81	0.10	1.35	195	93	253	0.16	1.29	306	171	412	0.33	1.13	533	425	771	0.49	0.96	707	762	1,079	0.65	855	-1,276
A	22.5	5 11.2	1.25	1.75	0.50	0.40	0.08	1.68	424	224	234	0.13	1.63	693	383	384	0.25	1.50	1,330	815	737	0.88	1.37	1,929	1,296	1,059	0.50	2,509	-1,534
	23.0	82	0.70	1.50	0.80	1 14	M12	1.38	113	37	245	0.20	1.30	279	87	397	0.40	1.10	448	295	733	0,70	0.90	44	626	1,007	0.80	602	-1,173
	23.0	8.2	0.80	1.55	0.75	0.94	0.11	1.44	214	92	237	0.19	1.36	332	175	384	0.38	1.18	560	457	714	0.56	0.99	719	846	991	0.75	842	-1,257
	23.0	8.2	0.90	1.70	0.80	0.89	0.12	1.58	311	125	277	0.20	1.50	486	233	449	0.40	1.30	829	589	837	0.60	1.10	1,078	1,066	1,164	0.80	1,279	-1,508


Recap of selection of coil and disc springs

Coil compression spring vs disc spring

SW models of both the coil & disc springs are downloaded from <u>LeeSpring</u> website

 $s1=0.15ho=0.11\,mm\ \rightarrow Fa1=214\,N$

$$s2 = 0.75ho = 0.56 mm \rightarrow Fa2 = 719 N$$

 $6 \times \Delta s = 6 \times 0.6 ho = 6 \times 0.45 = 2.7 mm$

- Compression springs have a large deflection and spring rate range
- Disc springs require a large force to exert a small deflection